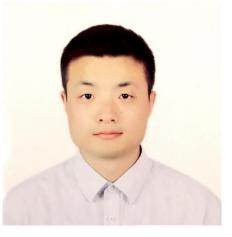
Mechanochemical synthesis of Sn-based halide perovskite microcrystals

Xuan Huang,^{a,b†} Xiaobing Tang,^{a,c†} Y. Charles Lu^{a,b*} and Fuqian Yang^{a,c*} ^a Laboratory of Functional Materials ^b Department of Mechanical and Aerospace Engineering ^c Department of Chemical and Materials Engineering University of Kentucky, Lexington, KY 40506, USA

<u>Abstract</u>

Hybrid organic halide perovskites have shown promising potential in optoelectronic applications such as solar cells and light-emitting devices. The lead-based halide perovskites exhibit exceptional light emission and absorption capabilities while the inherent toxicity from Pb has limited their applications. In this work, we synthesize a series of lead-free Sn-based halide perovskite microcrystals under ambient conditions directly from precursor powders (CsX and SnX₂ (X=I, Br, CI)) via a mechanochemical technique. This technique conserves energy and avoids the use of hazardous solvents. There are phase evolutions with $CsSn_2Br_5$ to $CsSnBr_3$ and then to the stabilized phase of Cs_2SnBr_6 after 28 days and Cs_2SnCl_4 to $CsSnCl_3$ and then to the stabilized phase of Cs_2SnCl_6 after 36 days during the mechanochemical synthesis. The stabilized Cs_2Snl_6 powder emits light with a peak wavelength of 930 nm when excited by 785 nm, and the stabilized Cs_2SnBr_6 powder emits light with a peak wavelength of 682 nm when excited by 365 nm. The thermal stability of the Cs_2SnBr_6 powder is superior to that of the Cs_2Snl_6 powder. This work presumably provides a green route for the synthesis of lead-free halide perovskites for industrial scale production.

Biography of Presenter


Xuan Huang

BS, Mechanical Engineering, Changzhou University, China, 2021

PhD candidate, Mechanical and Aerospace Engineering, University of Kentucky, 2023 - Teaching assistant, Mechanical and Aerospace Engineering, University of Kentucky

Research Topics: tin-based perovskite crystals by MCS

tin-based perovskite solar cell, tin halide perovskite light-emitting diode

